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Introduction

I Deep learning paradigms like Convolutional Neural Networks employed to learn features for
pixel wise segmentation

I Ensemble of 2-D and 3-D Convolutional Networks were used to perform the task of
segmentation

I Final prediction was attained by computing the Arithmetic Mean of all the posterior
probabilities (4 different networks).

I Post-processing using Conditional Random Field and 3-D connected components

Network architecture

I The ensemble comprises of two 3-D networks viz BrainNet & 3-D Tiramisu and one 2-D
network (2-D Tiramisu).

I BrainNet processes patches at multiple resolution and predicts the class associated to subset
of voxels in the input patch (93), Fig 1.

I The 3-D and 2-D variant of the Tiramisu-77 in the ensemble differs only type of convolution,
Fig 2 (b).

I Various building blocks for the network are shown in Fig 2 (a) and Fig 3

Figure: 3-D Fully Convolutional Neural network (BrainNet)

(a) (b)

Figure: a) BLOCK in 3-D network. b) 2-D 77 layer Tiramisu (FC-DenseNet77)

(a) (b) (c)

Figure: Blocks used in the model. a) Dense Block. b) Transition Down. c) Transition Up

Methods

I Pre-Processing and Data
. Volume wise Z-score normalization used to reduce scan variation between patients
. Stratified sampling was adopted for 3-D patch extraction (64x64x64) and (25x25x25 with

19x19x19)
. 2-D Slices were taken along the axial direction (240*240 pixels) for training 2-D networks

I Training
. 2D and 3D versions of Tiramisu model along with BrainNet models were used to perform

segmentation
. Weights initialized using Xavier initializer; trained using ADAM optimizer
. All the networks were trained combined HGG + LGG data (200 patients in training set, 57

in validation)
. Networks were trained using the combination of Weighted Cross Entropy and Dice Loss.
. Training was done using batch size = 4 and initial learning rate of 0.0001 and decay factor

of 0.1

I Post-processing
. Dense CRF with Gaussian edge potentials was used to smoothen predictions
. Network trained to detect Air, Brain and Lesion along with 3-D connected component

analysis was used to reduce outliers

Results: Local Data

I On the local test data, the ensemble of all networks achieved whole tumor, tumor core and
active tumor dice score of 0.91, 0.76, 0.75 respectively

Table: Results of local test data (n=30)

Whole Tumor Tumor Core Active Tumor
Mean 0.91 0.76 0.75
Std 0.10 0.26 0.31

Median 0.92 0.92 0.86

I Proposed segmentation algorithm achieve whole tumor, tumor core and active tumor dice of
0.89, 0.76 and 0.76 respectively on BraTS 2018 validation data

Table: Results of BraTS 2018 validation data, (n= 66)

Whole Tumor Tumor Core Active Tumor
Mean 0.89 0.76 0.76
Std 0.11 0.22 0.28

Median 0.88 0.82 0.83

Results: Figure

(a) (b) (c) (d)

Figure: (a) FLAIR, (b) Without Post-processing, (c) With Post-processing, (d) Ground truth. In images b, c and d,
Green, Yellow & Red represent Edema, Enhancing Tumor and Necrosis present in the lesion.

Tools and Code Availability

I The networks were developed using Pytorch framework.

I Networks were trained and evaluated on Nvidia GTX Titan X and Tesla K40C GPUs.

I https://github.com/koriavinash1/Ensemble-of-Deep-2D-and-3D-Fully-Convolutional-Neural-
Network-for-Brain-Tumor-Segmentation
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