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We demonstrate the utility of deep learning and radiomics features for classification of low grade gliomas (LGG)
into astrocytoma(A) and oligodendroglioma(O)
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In this study multi-modal Magnetic Resonance (MR) images and whole-slide H&E stained images of the brain
were used

Segmentation of whole tumor MR images were done using fully convolution neural networks

Filtered Patches

From the segmentation maps and T1 MR images high level radiomic features were extracted
Prominent features extracted from PCA were used to train a logistic regression classifier
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The pre-processing of the whole slide images involved region of interest detection, stain normalization and patch

. . Pre-processing and Data Generation
extraction based on lIsolation Forest

The extracted anomaly patches from the H&E images were used to train DenseNet161 to classify O & A

* Patches of size 224 x 244 were
extracted from each Slide

Radiology Pipeline

* Patches extracted from lLevel-0
( highest resolution)

_ _ . * Stain normalization' is used to
Segmenting 74 5 ¢ . s S normalize all the patches

Tumor Region

WholeSlide

Raw MR Image Pre Processed MR Image Tumor Segmentation
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P(Astrocytoma) = 77

P(Oligodendroglioma) = 7
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Pre-processing and stain normalization

Radiomic Feature Extraction! Tumor Patch Extraction

Pre-processing and Segmentation of MRI L
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Convolutional Autoencoder Why outlier detection? Outlier patches among all
the patches in a pathology whole slide were used as
possible differentials for two class classification.
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Whole Scan Tumor Mask

Outlier Detection
Using Isolation Forest
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3-D Neural Network Architecture

Concatenation 1

l From left to right: T1, T1C, T2, FLAIR, Segmented Tumor
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Confidence Based
Voting

Block in the 3-D Network Prediction
Segmentation Framework

Pathology Model
Radiomic Feature Extraction
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On the challenge test dataset (n=20):
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» MR model gave an accuracy of 80%

» Histopathology model gave an accuracy of 80%
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Segmented T1 Image 3D Tumor Patch Radiomic Feature Extraction!

» MR + Histopathology combined model gave an accuracy of 90%
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