

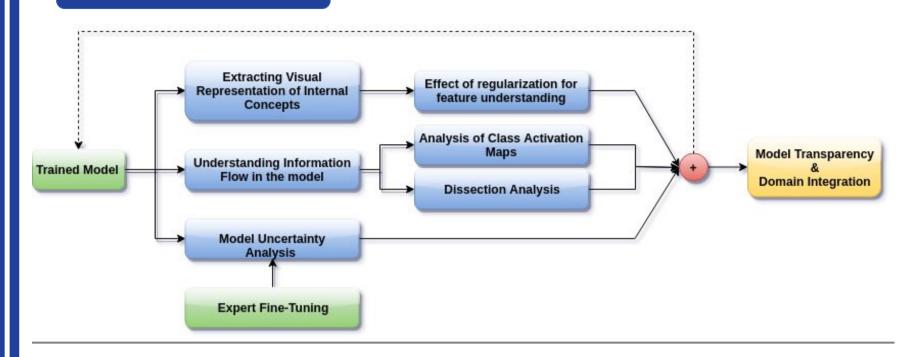
Interpretability of a Deep Learning Models

Avinash Kori, Ganapathy Krishnamurthi, Balaji Srinivasan

Robert Bosch Center for Data Science and Artificial Intelligence, IIT Madras, India koriavinash1@gmail.com, {gankrish, sbalaji}@iitm.ac.in

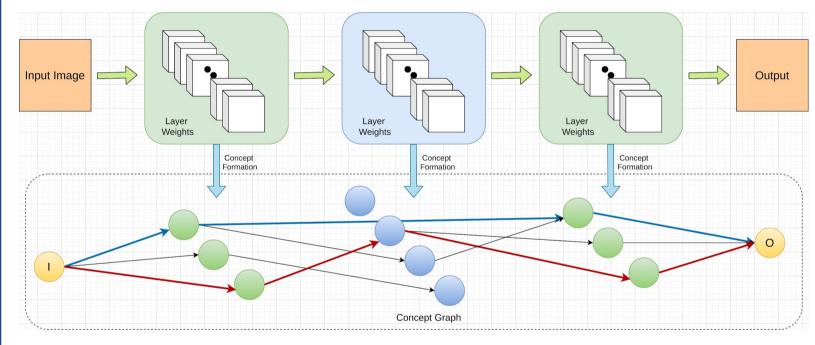
Objective

Current deep learning models are deep-rooted in correlation. Understanding their behavior and interpreting them is essential for deploying any model (especially in the biomedical domain).


This work aims to develop a framework for the explainability of these models.

Main Questions in interpretability:

- Why did the model make that prediction?
- When can we trust the predictions of the model?
- When will the model fail?
- **How** can we correct the errors?


Here, in this work, we address the first two questions, 'Why' and 'When' can the model be trusted.

'Why?' Framework

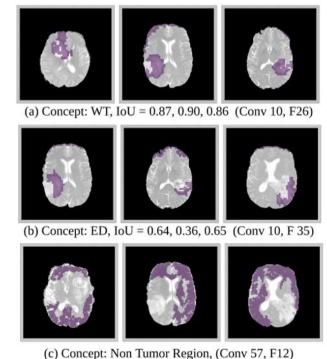
Activation Maximization	Dissection	Uncertainty
$x^* = argmax_x(\Phi_{k,l}(x) - R_{\theta}(x) - \lambda x _2^2))$	$M_{k,l}(x) = \Phi_{k,l}(x) \ge T_{k,l}(x)$	$Uncertainty \approx \frac{1}{T} \sum_{t=1}^{T} \Phi(x \mid w^{t})^{T} \Phi(x \mid w^{t})$ $- \mathbb{E}(\Phi(x \mid w^{t}))^{T} \mathbb{E}(\Phi(x \mid w^{t}))$
Generates representative image which maximizes the activation of specific filter	Generates implicit and explicit concepts learned by the network	Provides the information about uncertain regions in the prediction

'When?' Framework

3) Graph Formation

$$\begin{split} NMI(\mathbb{Q}(\Phi(x\mid do(C_{-i}^{p}=0), do(C_{-j}^{q}=0))), \mathbb{P}(\Phi(x\mid do(C_{-i}^{p}=0)))) &-\\ NMI(\mathbb{Q}(\Phi(x\mid do(C_{-i}^{p}=0), do(C_{-j}^{q}=0))), \mathbb{P}(\Phi(x\mid do(C_{j}^{q}=0), do(C_{-i}^{p}=0)))) > T\\ \Rightarrow NMI(\mathbb{Q}(\Phi(x\mid do(C_{-i}^{p}=0), do(C_{-j}^{q}=0))), \mathbb{P}(\Phi(x\mid do(C_{-i}^{p}=0)))) > T \end{split}$$

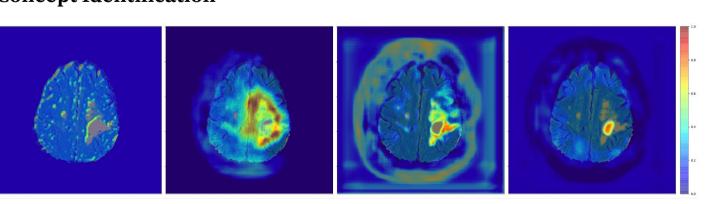
Concept Formation

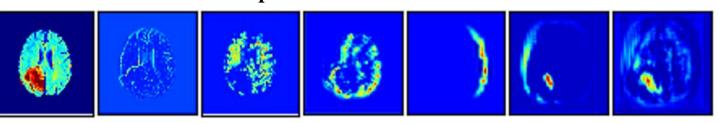

- The idea of Concept is to group of all the weights responsible in the formation of a particular feature which encodes a particular human-understandable or non-understandable concept
- Networks weights are transformed using non-symmetrical transformation function, later they are clustered using a hierarchical clustering method using distance-based thresholding to form concepts


Concept Identification

$$y(l, k, x) = \frac{1}{P} \sum_{i} \sum_{j} \Phi'_{l,k}(x)$$
$$\beta(l, k, x) = \frac{1}{N} \sum_{i} \sum_{j} \frac{\partial y(l, k, x)}{\partial \Phi'_{l,k}(x)}$$
$$Concept = \mathbb{E}_{k \sim idx_{p}} \left(ReLU \left(\beta(l, k, x) \Phi'_{l,k}(x) \right) \right)$$

Results


Network Dissection



Concept Identification

Trail Estimation and Interpretation

(Input Image to a network) -> (Concave edge detector) -> (Corner keypoints all over the brain) -> (Anterior brain boundary and inner brain corner keypoints) -> (Lateral right hemispherical brain boundary) -> (Lateral left hemispherical brain boundary) -> (Lateral tumor region)