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Objective ‘Why?’" Framework

Current deep learning models are deep-rooted in :
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model (especially in the biomedical domain).
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This work aims to develop a framework for the Domain Integration

explainability of these models.
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Main Questions in interpretability: Expert Fine-Tuning J

Why did the model make that prediction?
When can we trust the predictions of the
model?
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Activation Maximization Dissection Uncertainty

Here, in this work, we address the first two questions, Generates representative Generates implicit and explicit Provides the information about
‘Why’ and ‘When’ can the model be trusted. image which maximizes the | concepts learned by the network | uncertain regions in the
activation of specific filter prediction

‘When?’ Framework Concept Formation

The idea of Concept is to group of all the weights
responsible in the formation of a particular feature which
encodes a particular human-understandable or
non-understandable concept
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Concept Identification
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Network Dissection Concept Identification
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(a) Concept: WT, IoU = 0.87, 0.90, 0.86 (Conv 10, F26) (d) Concept: Non Tumor Region, (Conv 63, F0)
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(b) Concept: ED, IoU = 0.64, 0.36, 0.65 (Conv 10, F 35) (e) Concept: Tumor Boundary, (Conv 63, F32)

(c) Concept: Non Tumor Region, (Conv 57, F12) (f) Concept: TC, IoU = 0.91, 0.64, 0.81 (Conv 66, F11) (Input Image to a network) -> (Concave edge detector) -> (Corner keypoints all over the brain)
-> (Anterior brain boundary and inner brain corner keypoints) -> (Lateral right hemispherical
brain boundary) -> (Lateral left hemispherical brain boundary) -> (Lateral tumor region)

Code Available at: https://github.com/koriavinash1/BicExp




