
Proposition

• The reliability of segmentation models in the medical do-main depends on the model’s robustness to 
perturbations in the input space. 

• Robustness is a particular challenge in medical imaging exhibiting various sources of image noise, 
corruptions, and domain shifts.

• We propose quantisation of the latent space of any segmentation network architecture, mapping the input 
images to a lower dimensional embedding space increases robustness to perturbation in the input space 

[1].
• We derive an empirically driven upper bound for maximum allowed shift in the latent space due to 

perturbation for robustness to hold.
• We focus on anatomical segmentation which benefits most from a quantized latent space.
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Quantisation for Robustness

• The quantisation process initially requires us to define a codebook c ∈ RKxD. K is the size of the 
codebook and D is the dimensionality of each D codebook vector li ∈ RD . 

• We then define a discrete uniform prior and learn a categorical distribution P(z | x) as follows [1]:

Figure 1: Proposed model architecture. We consider the UNet as our benchmark segmentation architec-
ture and for the proposed architecture, VQ-UNet, we add a vector quantisation block at the bottleneck 

layer of the baseline UNet. Our codebook size (K) is 1024 each of dimension (D) 256. We consider both 2D 
and 3D Unets for 2D and 3D datasets respectively.

• Quantisation is non-differentiable, so we update the codebook weights  with straight-through gradient 
approximation. We use the following loss function with stop gradient (sg) applied to constrain the 

update to the appropriate operand [1].

The first two terms in the above equation refers to the dice and cross entropy loss while the last two 
terms aims to reduce the Euclidean distance between the codebook vectors and the output of the 

encoder.

• Given the assumptions made, Φq (Φe(x+δ(x))) = Φq (Φe(x)+δ(x)T∇xΦe(x)). We claim, quantisation pushes 
δ(x)T ∇wΦe(x) to 0 and thereby enforces Φq (Φe(x + δ(x))) = Φq (Φe(x)). 

Slice-to-Volume Reconstruction

Conclusion
• We propose and justify that given a segmentation 

architecture which maps the input space to a low 
dimensional embedding space, learning a discrete latent 
space via quantisation improves robustness of the 
segmentation model.

• In future work we propose to constrain the manifold upon 
which the embed the codebook. Specifically we hypothesize 
uniformly spreading the codebook vectors on the surface of 
the hypersphere improves robustness.
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Assumptions

• Assuming a small value for δ(x), we can then approximate Φ(x + δ(x)) with a first order Taylor expansion as 
follows: Φ(x + δ(x)) = Φ(x) + δ(x)T ∇XΦ. Therefore, the training framework should optimize for argminW[Φ(x+ 

δ(x)) − Φ(x)] to be robust.
• In this work we assume that the segmentation network can be decomposed into an encoder (Φe) and 

decoder (Φd) such that Φ = Φd ◦ Φe, where Φe : X → E maps from image space to a lower dimensional 
embedding space and Φd : E → Y maps the embedding space back to segmentation space.

Aim

Given an input x, we first define a function f(x) to represent the transformed input due to perturbation. The 
aim in this work is to find a way to learn a model (Φ) with weights w to be robust against δ(x) and 

construct an uncorrupted segmentation y from the perturbed input f(x).

Perturbation Bounds

• The maximum perturbation allowed around a single codebook vector denoted r and calculated 
empirically as half the average distance between a codebook vector (li) and its nearest neighbour (li+1) 
across the whole of the codebook provided the codebook is uniformly distributed. This is defined in 

the equation below as follows:

• We can the above equation and the first order Taylor expansion of Φe(x + δ(x)) to theoretically express r in 
terms of δ(x) as follows:

• Therefore, to affect an output of the quantisation block Φq, a perturbation δ(x) should lead to a change in 
the embedding space (e) greater than r whose upper bound is expressed in terms of δ(x).

Datasets

• We use the following 3 datasets for our experiments

Abdomen Prostate Chest

Name Beyond the 
Cranial Vault 
(BTCV) [2]

NCI-ISBI13 Challenge [3] NIH Chest X-ray and 
the Japanese Society of 
Radiological 
Technology (JSRT) 
dataset [4].

Number of scans 30 CT scans 60 T2 weighted MRI scans of 
which half (BMC) are acquired 
on a 1.5T scanner with an 
endorectal coil and the other 
half (RUNMC) on a 3T scanner 
with a surface coil

100 Chest X-rays (NIH)
154 Chest X-rays (JRST)

Preprocessing Normalised to 0-1 
and resampled to 
1.5×1.5×2mm

All images were re-sampled to
0.5×0.5×1.5mm and z-score 
normalized

Images were resized to 
512×512 pixels and 
normalised to 0-1

• We compare how much the latent space changes in both models with different perturbations in the input space.
• We choose three different types of noise perturbations (Gaussian, salt and pepper, and Poisson noise) under 5 noise levels ranging from 0% to 

30% to justify our claim of robustness.

Figure 2: Variance heatmap of Unet (left) and VQ-Unet (right) latent space under 4 Gaussian noise levels for the NIH dataset. X-axis indicates a 
unique subset of features from a latent space, Y-axis corresponds to 100 randomly sampled test set images, and value at each location indicates the 

variance of a specific feature for a given image across 100 test time augmentations with Gaussian noise.

In Table 2, It can be seen that latent 
space features in VQ-UNet are not 
significantly changed (close to 0 variance) 
under various types of noise. The results 
are visualised in Figure 2 whereby the 
latent space of the VQ-UNet does not 
significantly change compared to the 
UNet under the addition of up to 30% 
Gaussian noise in the NIH dataset. 

Figure3: Image and segmentation output for UNet and VQ-UNet under 0% (1st 3 columns) and 30% (2nd 3 columns) for s&p noise. Abdomen (1st

row), Chest X-Ray NIH Sample (Second row), BMC Prostate Sample (Third Row).  

The VQ-UNet improved the segmentation performance both 
on the validation set and test set from a different domain for 
both prostate and chest X-ray. One notes particularly the 
ability to produce segmentation shapes which are more 
anatomically more meaningful. This highlighted 
quantitatively in the Dice score and and 95% Haussdorf 
distance in table 4.

Perturbation Study

We note in Figure 3 the segmentation maps produced 
by the VQ-UNet under the addition of 30% Gaussian 
noise do not change visually compared to the UNet. 
We make similar findings for salt & pepper noise and 
Poisson noise which is highlighted quantitively in 
Table 3.

Figure 4:  Sampled image input and Segmentation output for 2 domain shifts in chest X-ray (top row) and prostate (bottom row). 

Domain Shift Study


