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Introduction

Interpretability in abstract sense involves finding answers to the following questions:

● Why did the model make that prediction?

● When can we trust the predictions of the model?

● How can we correct the errors made by the model?
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Related Work
Methods Attention maps Concept Based Hierarchy of steps

Dissection[1] ✔ ❌ ❌
GradCAM[2] ✔ ❌ ❌
SHAP[3] ✔ ❌ ❌
LIME[4] ✔ ❌ ❌
Ghorbani et.al[5] ✔ ✔ ❌
Ours ✔ ✔ ✔

[1] Network Dissection: Quantifying Interpretability of Deep Visual Representations; [2] Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization; [3] A Unified Approach to Interpreting Model 
Predictions; [4] "Why Should {I} Trust You?": Explaining the Predictions of Any Classifier; [5] Towards automatic concept-based explanations 3



Proposed Framework
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Concept Formation
● Weight Clustering : Grouping of weights based on Silhouette coefficient[5]  to identify optimal 

number of clusters in a given layer of CNN

[5] Silhouettes: a graphical aid to the interpretation and validation of cluster analysis 5

(a) Initial layers of UNet, unrolled weights: 64, (3x3x16) weight tensor, (b) Silhouette analysis of the unrolled weight layer 



Concept Identification
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CAMl
p
 is concept attention map of cluster p in layer l, 𝛽 is feature importance, and 𝘆 is concept representative variable 

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization



Concept Completeness 
● Concept Consistency: attention obtained by single concept over multiple images in a dataset
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Concept Completeness 
● Concept Robustness: attention obtained by sampled concept over an image in a 

dataset
● Aim of robustness is to analyse how spreaded the weights are in a concept
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i
s are concepts in layer (l-1) and B

i
s are concepts in layer l



Concept Graph Formation
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ℙ: pre-interventional distribution, ℚ: post-interventional distribution, 𝜱: trained model, and C

-i
p corresponds to all concepts 

other than i in layer p



Concept Graph Formation
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Concepts
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Trail Visualization
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Trail Visualization
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Future Work

● Trail importance estimation 

● Extension of work in ante-hoc interpretability(HAI), to use estimated trails in training phase

● Extension of approach on 3D networks and RNNs
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Thank you

Github  : https://github.com/koriavinash1/BioExp

Contact: koriavinash1@gmail.com

Acknowledgements: Dr. Ravikanth Balaji (Radiologist), Dr. Devika Joshi (Ophthalmologist), RBCDSAI, 
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