
A Combined Radio-Histological 
Approach for Classification of 

Low Grade Gliomas
Aditya Bagari*1, Ashish Kumar*1, Avinash Kori *1, Mahendra Khened *1 and

Ganapathy Krishnamurthiy 1

1Department of Engineering Design, Indian Institute of Technology Madras,

Chennai

* Equal contribution
Assistant Professor, gankrish@iitm.ac.in



Radiology Pipeline

Pre 

Processing

Segmenting 

Tumor Region

Radiomic 

Features

Classification 

Model

E
xtractin

g 

T
u
m

o
r P

atch

P(Astrocytoma) = ??

P(Oligodendroglioma) = ??

Raw MR Image Pre Processed MR Image Tumor Segmentation

Tumor Patch ExtractionRadiomic Feature Extraction1

1.http://www.radiomics.world/?q=node/4

Raw

Images
Pre Processing 

of  Raw Images

Identifying RoI

(Tumor Region)
Extracting

Tumor Patches

Extracting 

Radiomic Features

Classification 

Model



Pre Processing of  Magnetic Resonance Images
The MR dataset were fed into a pre-processing pipeline which involved skull-stripping (ROBEX), 

co-registration of  MR sequences to T1c and re-sampling of  MR volumes to isotropic voxels.
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• A Fully Convolutional 3-D Neural Network was used to segment the tumor 

• The network architecture extracts both local and global features from 3-D patches

• Network trained on publicly available MICCAI BraTS 2018 dataset

• Architecture inspired by Deep Medic1 and Havaei et al2

Segmentation of  Brain Tumor
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3-D Neural Network Architecture
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Radiomics Feature Extraction
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The features were extracted via the radiomics platform provided by pyradiomics2. These features describe, amongst 

others, tumor image intensity, texture and shape and size of  the tumor.
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Two Class Classification
Each (16,1) length reduced radiomic features vector was used to train a Two Class Classification Model. Logistic Regression 

with LIBLINEAR as the optimization algorithm was used to train the model on a 5-fold cross validation basis.
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LOGISTIC REGRESSION MODEL

Optimization Algorithm: Liblinear

Basis: 5-Fold Cross Validation

Test Phase

From each slide, patches are extracted exhaustively and stains are normalized. Trained autoencoder is used to extract features 

for each patch. Using these features outlier patches are filtered out using Isolation Forest. Voting based prediction on the set 

of  filtered patches gives the class prediction
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Patch Extraction and Stain Normalization 

• Patches of  size 224 x 244 were 
extracted from each Slide

• Patches extracted from Level-0 
( highest resolution)

• Stain normalization1 is used to 
normalize all the patches
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Feature Extraction and Outlier Detection
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Why outlier detection? Outlier patches among all 

the patches in a pathology whole slide were used as 

possible differentials for two class classification.
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Two Class Classification

Test Phase

• From each slide, patches are extracted exhaustively and stains are normalized
• Trained autoencoder is used to extract features for each patch
• Using these features outlier patches are filtered out using Isolation Forest
• Voting based prediction on the set of  filtered patches gives the class prediction

• Training Set: 60k patches from 30 training slides used for training DenseNet Classifier

• Model trained using mini-batch Stochastic Gradient Descent



Combining Radiology with Pathology Results

• Both models achieve an accuracy of  80% on the test set

• Confidence based voting was used to combine results from both the model

• Final accuracy with the combined results was 90% on the test set

Pipeline for Combining Results from Radiology and Pathology 


