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Structure

o Brief introduction to Vatriational AutoEncoders (VAE)! and Causal Infer-

ence2.

1Djederik P Kingma and Max Welling. “An introduction to variational autoencoders”. In: arXiv preprint arXiv:1906.02691 (2019).

2 Judea Pearl. “The seven tools of causal inference, with reflections on machine learning”. In: Communications of the ACM 62.3
(2019), pp. 54-60.
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Vatriational AutoEncoders

VAEs are generative methods to approximate the data distribution with an
explicit likelihood formulation.

neural network neural network

encoder

decoder

d(z)

loss = ||x-x|P + KL N, D] = ||x-d(2)]|]* + KLI ,N(O, 1) ]
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Vatriational AutoEncoders

Key advantages and uses for VAE
o VAE approximates data distribution.

3Da\phne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. 2009.
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Vatriational AutoEncoders

Key advantages and uses for VAE
o VAE approximates data distribution.
@ VAE are easy to train when compared to any model € GAN family.
@ VAE framework helps us to control latent space, in terms of disentanglement.

@ As VAEs assume Gaussian priors, this results in elegant bound estimation
(further reading: ELBO3).

3Da\phne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. 2009.
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Causal Inference

Data + graph assumptions
(Causal Inference)
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Causal Inference
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Causal inference can be
categorized into three
different stages:

@ Association

Cﬁusnmn
@ Intervention Qo
[®]
@ Counterfactuals | ®
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Causal Inference

observable joint intervention joint

training data

777

observational intervention
conditional conditional

intervention model
:, N O q(y|z; 0) C ,_:
p(ylx) p(y| do(z))

X

4 ML beyond Curve Fitting: An Intro to Causal Inference and do-Calculus. https://wwu.inference.vc/untitled/.
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Relevance to STAI

@ Explainable Al helps us trust deep learning models, in any high stack decision
making problems.
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Relevance to STAI

@ Explainable Al helps us trust deep learning models, in any high stack decision
making problems.

@ Causal explainability helps us to determine true cause and effect in the decision
making process.
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Main Contributions in the paper

Aim: To generate causal post-hoc explanations for any deep learning classifiers.

Key Contributions
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Main Contributions in the paper

Aim: To generate causal post-hoc explanations for any deep learning classifiers.

Key Contributions
@ Design of new conceptual framework.
@ Regularization function to disentangle latent features into two groups.

@ Controlled experimentation.
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Methodology
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Methodology

argmax C(a,Y)+ XD (p(g(e, 3)), p(X))
geG

Proposition 2 (Information flow in our DAG). The information flow from o to 'Y in the DAG of
Figure 1(b) coincides with the mutual information between o and Y . That is, (o« - Y) = I(a;Y'),
p(a.Y) ]

where mutual information is defined as I(e;Y) = E, y {log 2@ ()

Algorithm 1 Principled procedure for selecting (K, L, A).
1: Initialize K, L, A\ = 0. Optimizing only D, increase L until objective plateaus.
2: repeat increment K and decrement L. Increase X until D approaches value from Step 1.
3: until C reaches plateau. Use (K, L, A) from immediately before plateau was reached.
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Limitations

@ Limited experimentation.
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Limitations

@ Limited experimentation.

@ Method only works against linear generative class models.
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Limitations

@ Limited experimentation.
@ Method only works against linear generative class models.

@ It's hard to associate explanations to the classifier.
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Possible future directions

@ Incorporate classifiers influence to a greater extent in generating explanations.

5Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. “Deep structural causal models for tractable counterfactual inference”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 857—869.
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Possible future directions

@ Incorporate classifiers influence to a greater extent in generating explanations.
@ Explore the possibility of non-linear generative models.

@ To incorporate an idea of DSCM? in the framework.

5Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. “Deep structural causal models for tractable counterfactual inference”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 857—869.
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Questions?

Thank Youl!
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