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Structure

Brief introduction to Vatriational AutoEncoders (VAE)1 and Causal Infer-
ence2.

Relevance to STAI.
Main contributions in the paper.
Methodology
Results
Limitations and Future directions

1Diederik P Kingma and Max Welling. “An introduction to variational autoencoders”. In: arXiv preprint arXiv:1906.02691 (2019).
2Judea Pearl. “The seven tools of causal inference, with reflections on machine learning”. In: Communications of the ACM 62.3

(2019), pp. 54–60.
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Vatriational AutoEncoders

VAEs are generative methods to approximate the data distribution with an
explicit likelihood formulation.
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Vatriational AutoEncoders

Key advantages and uses for VAE
VAE approximates data distribution.

VAE are easy to train when compared to any model ∈ GAN family.
VAE framework helps us to control latent space, in terms of disentanglement.
As VAEs assume Gaussian priors, this results in elegant bound estimation
(further reading: ELBO3).

3Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. 2009.

K. Avinash Generative causal explanations of black-box classifiers



Vatriational AutoEncoders

Key advantages and uses for VAE
VAE approximates data distribution.
VAE are easy to train when compared to any model ∈ GAN family.

VAE framework helps us to control latent space, in terms of disentanglement.
As VAEs assume Gaussian priors, this results in elegant bound estimation
(further reading: ELBO3).

3Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. 2009.

K. Avinash Generative causal explanations of black-box classifiers



Vatriational AutoEncoders

Key advantages and uses for VAE
VAE approximates data distribution.
VAE are easy to train when compared to any model ∈ GAN family.
VAE framework helps us to control latent space, in terms of disentanglement.

As VAEs assume Gaussian priors, this results in elegant bound estimation
(further reading: ELBO3).

3Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. 2009.

K. Avinash Generative causal explanations of black-box classifiers



Vatriational AutoEncoders

Key advantages and uses for VAE
VAE approximates data distribution.
VAE are easy to train when compared to any model ∈ GAN family.
VAE framework helps us to control latent space, in terms of disentanglement.
As VAEs assume Gaussian priors, this results in elegant bound estimation
(further reading: ELBO3).

3Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. 2009.

K. Avinash Generative causal explanations of black-box classifiers



Causal Inference
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Causal Inference

Causal inference can be
categorized into three
different stages:

Association
Intervention
Counterfactuals
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Causal Inference

4
4ML beyond Curve Fitting: An Intro to Causal Inference and do-Calculus. https://www.inference.vc/untitled/.
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Relevance to STAI

Explainable AI helps us trust deep learning models, in any high stack decision
making problems.

Causal explainability helps us to determine true cause and effect in the decision
making process.
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Main Contributions in the paper

Aim: To generate causal post-hoc explanations for any deep learning classifiers.

Key Contributions

Design of new conceptual framework.
Regularization function to disentangle latent features into two groups.
Controlled experimentation.
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Methodology
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Results
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Limitations

Limited experimentation.

Method only works against linear generative class models.
It’s hard to associate explanations to the classifier.
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Possible future directions

Incorporate classifiers influence to a greater extent in generating explanations.

Explore the possibility of non-linear generative models.
To incorporate an idea of DSCM5 in the framework.

5Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. “Deep structural causal models for tractable counterfactual inference”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 857–869.
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Questions?

Thank You!
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