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What is Interpretability?

“Interpretability is the degree to which a human can understand the cause of a decision” or in other terms “Interpretability is the degree
to which a human can consistently predict the model's result.” !

° Higher the interpretability of a machine learning model, the easier it is for someone to comprehend why certain decisions or
predictions have been made
° A model is better interpretable than another model if its decisions are easier for a human to comprehend
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Interpretability vs Explainability

® Interpretability focuses on understanding the model
e Explainability focuses on explaining models reasoning

e Interpretability -> Explainability
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Post-hoc: Local Explanations: LIME®?
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e  Explanations are feature importance/contribution in
making certain decision

L(f,g,ms) = Y ma(2) (F(2) — 9(2))’
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[2] Ribeiro, M.T.,, Singh, S. and Guestrin, C., 2016, August. " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1135-1144).



Post-hoc: Local Explanations: LIME

Prediction probabilities edible poisonous Feature Value
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Post-hoc: Local Explanations: GradCAM“

Guided Backpropagation
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[4] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international 7
conference on computer vision (pp. 618-626).



Post-hoc: Local Explanations: GradCAM
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Post-hoc: Hybrid Explanations: Dissection"
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[3] Bau, D., Zhou, B., Khosla, A., Oliva, A. and Torralba, A., 2017. Network dissection: Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 6541-6549).
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Post-hoc: Hybrid Explanations: Dissection

House Dog Train Plant Airplane
res5c unit 1410 loU=0.142 res5c unit 1573 loU=0.216 res5c unit 924 loU=0.293 res5c unit 264 loU=0.126 res5c unit 1243

™

loU=0.112 conv5_3 unit 402 loU=0.058 conv4_3 unit 336

loU=0.172

10



Post-hoc: Hybrid Explanations: SimplEx®

Test Example Corpus Examples
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[5] Crabbé, J., Qian, Z., Imrie, F. and van der Schaar, M., 2021. Explaining Latent Representations with a Corpus of Examples. Advances in Neural Information Processing Systems, 34.
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Post-hoc: Hybrid Explanations: Counterfactuals'

° “What-if” explanations Feature Extraction Exhaustive Search
e what region in the image made the model predict class ¢ '
instead of class c¢’?
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Figure 4. In our exhaustive best-edit search, we check all pairs of
query-distractor spatial locations and select whichever pair maxi-
mizes the log probability of the distractor class ¢’.
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[6] Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D. and Lee, S., 2019, May. Counterfactual visual explanations. In International Conference on Machine Learning (pp. 2376-2384). PMLR. 12



Post-hoc: Hybrid Explanations: Semi-factuals'”’

e  “Even-if” explanations
e Even if the feature value is changed from a to b the

image would still be classified as ¢

®  This paper proposes a gradient based method to find
the decision boundary
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[7] Kenny, E.M. and Keane, M.T., 2021. On generating plausible counterfactual and semi-factual explanations for deep learning. AAAI-21, pp.11575-11585.
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Post-hoc: Global Explanations: FeatureVis'®

z* = arg max (¥ (z) — Ry (z) — Al z|3)

= I(u,_v, k) + [I(u+1,v,k) — I (u,v,k)])

L(z,s) =Y > (k(ziz;) + k(si8;) — 2k (@i, 55))
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[8] Olah, C., Mordvintsev, A. and Schubert, L., 2017. Feature visualization. Distill, 2(11), p.e7.

Mechanistic form of interpretability
Hand engineer an explainable model by interpreting
trained complex model
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Post-hoc: Global Explanations: FeatureVis

NEW. N : .
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Post-hoc: Global Explanations: Circuits'®’
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[9] Olah, C., Mordvintsev, A. and Schubert, L., 2017. Feature visualization. Distill, 2(11), p.e7.
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Post-hoc: Global Explanations: TACE'"°!

(a) Multi-resolution segmentation of images (b) Clustering similar segments and removing outliers (c) Computing saliency of concepts
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[10] Ghorbani, A., Wexler, J., Zou, J.Y. and Kim, B., 2019. Towards automatic concept-based explanations. Advances in Neural Information Processing Systems, 32. 17



Ante-hoc: Neuro-Symbolic™

Concept Embedding
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[11] Stammer, W., Schramowski, P. and Kersting, K., 2021. Right for the right concept: Revising neuro-symbolic concepts by interacting with their explanations. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (pp. 3619-3629).
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Ante-hoc: Debate
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Desired Properties for Explanations

e  Faithfulness:
- Measures the contribution of a model in making
model specific explanations
- Anexplanation is faithful to the model if it
represents the true reasoning process of the
model

e  Stability:
- Measures variability across runs
- Model is supposed to follow same reasoning for
similar examples

Robustness:

Measures the effect of small scale perturbations
on explanations

Coherence :

Measures the degree of contradicting reasoning
made by a model
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Desired Properties for Explanations
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Questions?
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